

ISMIS 2002. Abstracts of the Fourth International Symposium on Molecular Insect Science. 70pp. *Journal of Insect Science*, 2:17, Available online: insectscience.org/2.17

Journal of Insect Science

Fourth International Symposium on Molecular Insect Science

28 May to 2 June 2002, Tucson, Arizona, USA

Received 18 June 2002, Published 21 August, 2002

Program Committee

Stuart E. Dryer (University of Houston), Peter D. Evans (Babraham, Cambridge, UK), Sarjeet S. Gill (University of California, Riverside), Lawrence G. Harshman (University of Nebraska), John G. Hildebrand (University of Arizona), Anthony A. James (University of California, Irvine), Michael R. Kanost (Kansas State University), Therese A Markow (University of Arizona), Nancy A. Moran (University of Arizona), Sharon D. Richards (University of Arizona), Lynn M. Riddiford (University of Washington, Seattle), Michael A. Wells (University of Arizona), Judith Willis (University of Georgia), Mariana F. Wolfner (Cornell University).

ISMIS 2002. Abstracts of the Fourth International Symposium on Molecular Insect Science. 70pp. *Journal of Insect Science*, 2:17, Available online: insectscience.org/2.17

Analysis of dietary proteins derived from prey eggs and an embryonic cell line and their effects on the fecundity of *Orius insidiosus*

Ferkovich SM, Shapiro JP

USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Dr., Gainesville, FL 32604. smferkovich@gainesville.usda.ufl.edu

The fecundity of the insidious flower bug, Orius insidiosus (Hemiptera: Anthocoridae), was poor when reared on a minimal artificial diet (control diet) composed of brewers yeast, soy protein hydrolysate and chicken yolk. Consequently, we supplemented test diets with homogenates of eggs from the Indian meal moth (Plodia interpunctella), proteins or lipids extracted from Plodia eggs, or an embryonic cell line (PIE) derived from *Plodia* eggs. Test diets were also supplemented with each of three fatty acids identified to be predominant in prey eggs (palmitic, linoleic and oleic acid), bovine serum albumin (BSA), chicken liver, beef liver, or chicken egg white albumin. Diets were compared against an optimal standard, Plodia eggs, and the control diet on the basis of the average total number of eggs a female oviposited during her lifetime. Only proteins derived from *Plodia* eggs and the cell line produced significant improvements in fecundity over the control diet at relatively low concentration of protein, indicating the quality of protein is important in selecting

supplements. Proteins extracted from prey eggs and the cell line were further separated by preparative isoelectric focusing and are being evaluated in the artificial diet.